skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "O'Brien, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The interplay between quantum and thermal fluctuations in the presence of quenched random disorder is a long-standing open theoretical problem which has been made more urgent by advances in modern experimental techniques. The fragility of charge density wave order to impurities makes this problem of particular interest in understanding a host of real materials, including the cuprate high-temperature superconductors. To address this question, we consider the quantum version of an exactly solvable classical model of two-dimensional randomly pinned incommensurate charge density waves first introduced by us in a recent work, and use the large-N technique to obtain the phase diagram and order parameter correlations. Our theory considers quantum and thermal fluctuations and disorder on equal footing by accounting for all effects non-perturbatively, which reveals a novel crossover between under-damped and over-damped dynamics of the fluctuations of the charge density wave order parameter. 
    more » « less
  2. We have developed a sensing system that utilizes a low-cost computer (Raspberry Pi) and its imaging camera as an optical sensing core for the continuous detection of NO2in the air (PiSENS-A). 
    more » « less